Berechnungs- und Bemessungshilfen für Bauingenieure

Allgemeine Ebene Stabwerke

Berechnung von Allgemeinen Ebenen Stabwerken nach Theorie I. Ordnung.

Auf den nachfolgenden Seiten können Statikberechnungen für allgemeine ebene Stabwerke durchgeführt werden. Die Erbenisse werden in Form von Tabellen und Grafiken ausgegeben und können über die Copy-Paste Funktion des Browsers weiterverwendet werden.

Die Berechnungen werden direkt auf dem Webserver durchgeführt und auf dem PC oder Smartphone angezeigt. 

Derzeit können Einzellasten und Momente an biegesteifen Knoten sowie Streckenlasten auf Stäben eingegeben werden.  Für jede Einzellast muss ein weiterer Knoten angeben werden. Ein Einfeldträger mit mittiger Einzellast würde somit aus drei Konten und zwei Stäben bestehen. Hier gibt es eine bespielhafte Systemeingabe für einen Zweifeldträger.

Hier geht's 

 

Hinweis: Die Trennung der Dezimalstellle erfolgt in jedem Eingabefeld mit einem Punkt. Nicht mit Komma!

Allgemein Ebene Stabwerke

Berechnung von allgemeinen ebenen Stabwerken nach Theorie I. Ordnung 

 

1. Allgemeine Festlegungen

    Dimensionen:

    Kräfte: kN, kNm

    Längen : m

    Statische Größen : cm2, cm3, cm4

 

2. Die Knotenpunkte i,k usw. des Systems werden im Koordinatensystem xs, zs mit nach oben positiver z-Achse angegeben

 

3. Die allgemeinen Knotenlasten Fx , Fz , Fq , werden dagegen im System xf = xs , zf =-zs, d.h. nach unten positiv,beschrieben. Fq ist rechtsdrehend positiv 

4. Für die allgemeinen Weggrößen vx, und vz und f eines Knotens gilt dieselbe Vorzeichenreglung wie für Knotenlasten. 

   

5. Für die Stabschnittgrößen N, V und M wird ein zum Stab s gehörendes Koordinatensystem x, z eingeführt. 

              

Die positive x-Richtung wird durch die Reihenfolge der Knotennummern i und k festgelegt, d.h., bei i<k ist i der Stabanfang und k das Stabende. Die positive z-Richtung ergibt sich dann wie in der Stabstatik üblich durch Rechtsdrehung der x-Achse um 90 °.

Das x/z-System wird lokales Koordinatensystem genannt.

 

6. Die Lager sind am globalen Koordinatensystem orientiert, wodurch die folgenden Lagerungsbedingungen realisiert werden können.

a)      Festhaltung nur in x-, z- oder q-Richtung = einwertige Lager

b)      Festhaltung in x-Richtung und z-Richtung

oder in x- und q-Richtung

            oder in z- und q-Richtung

            = zweiwertige Lager

c)       Festhaltung in x-, und z- und q-Richtung = dreiwertige Lager

Schräge Gleitlager können durch einfügen von Pendelstäben realisiert werden

System und Einwirkungen

Anzahl Konten und Stäbe

nk = 4              
ns = 3              
                   
Knotenkoordinaten und Auflager

Knotenkoordinaten  
Nr. xi zi              
i m m              

1 0 0              
2 3.00 0              
3 5.15 0              
4 7.15 0              
Auflagerbedingungen (0=fest, 1 = frei)

Kn. Nr. x z R

1 0 0 1
2 1 0 1
3 1 1 1
4 1 0 1
Knotenlasten

Kn.   Fx Fz M
Nr. kN kN kNm

1 0 0 0  
2 0 0 0
3 0 15 0  
4 0 0 0  
Stäbe und Stabbindungen

Stab Ende1 Ende2 Querschnittswerte  
Nr. i k   A [cm²]

Iy

[cm4]

       

1 1 2        
2 2 3        
3 3 4        
                   
Zwischengelenke an Stabenden (0=fest, 1 = frei)

Stab Ende 1 Ende 2      
Nr. x z R x z R      

1 0 0 0 0 0 0      
2 0 0 0 0 0 0      
3 0 0 0 0 0 0      
                 
Gelenklasten  

Gel. Fx Fz M            
Nr. kN kN kNm

1 0 0 0            
2 0 0 0            
3 0 0 0            
4 0 0 0            
                   
                   
Stablasten

Stab p1 p2 p4 p4  
Nr. kN/m kN/m kN/m kN/m

1 1.25 3.00              
2 0 0              
3 0 0